Article ID Journal Published Year Pages File Type
4626455 Applied Mathematics and Computation 2015 11 Pages PDF
Abstract

A local convergence analysis of Inexact Newton’s method with relative residual error tolerance for finding a singularity of a differentiable vector field defined on a complete Riemannian manifold, based on majorant principle, is presented in this paper. We prove that under local assumptions, the Inexact Newton method with a fixed relative residual error tolerance converges Q linearly to a singularity of the vector field under consideration. Using this result we show that the Inexact Newton method to find a zero of an analytic vector field can be implemented with a fixed relative residual error tolerance. In the absence of errors, our analysis retrieves the classical local theorem on the Newton method in Riemannian context.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,