Article ID Journal Published Year Pages File Type
4626660 Applied Mathematics and Computation 2015 14 Pages PDF
Abstract

For a general Cohen–Grossberg neural network model with potentially unbounded time-varying coefficients and infinite distributed delays, we give sufficient conditions for its global asymptotic stability. The model studied is general enough to include, as subclass, the most of famous neural network models such as Cohen–Grossberg, Hopfield, and bidirectional associative memory. Contrary to usual in the literature, in the proofs we do not use Lyapunov functionals. As illustrated, the results are applied to several concrete models studied in the literature and a comparison of results shows that our results give new global stability criteria for several neural network models and improve some earlier publications.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,