| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 462809 | Microprocessors and Microsystems | 2013 | 12 Pages |
Abstract
Hardware accelerators are getting increasingly important in heterogeneous systems for many applications, including those that employ matrix decompositions. In recent years, a class of tiled matrix decomposition algorithms has been proposed for out-of-memory computations and multi-core architectures including GPU-based heterogeneous systems. However, on FPGAs these scalable solutions for large matrices are rarely found. In this paper we use the latest tiled decomposition algorithms from high performance linear algebra for off-chip memory access and loop mapping on multiple processing cores for on-chip computation to perform scalable and high performance QR and LU matrix decompositions on FPGAs.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Networks and Communications
Authors
Yi-Gang Tai, Chia-Tien Dan Lo, Kleanthis Psarris,
