Article ID Journal Published Year Pages File Type
462938 Microprocessors and Microsystems 2016 12 Pages PDF
Abstract

As demand of higher computing power is steadily increasing, it becomes popular to equip a many-core accelerator in a computer system to run concurrent applications. Efficient management of compute resources in such a system is challenging because various factors such as workload variation, QoS requirement change, and hardware failure may cause dynamic change in system status. Recently, a variety of resource management techniques for many-core accelerators have been proposed. They are usually tailored for a specific target architecture. In this paper, we present SoPHy+, which supports various types of many-core accelerators, based on a hybrid resource management technique. SoPHy+ provides a seamless design flow from programming front-end, which generates dataflow-style function codes automatically from the task specification, to run-time environment, which adaptively manages compute resources for concurrent applications in response to system status change. SoPHy+ has been implemented on two different many-core architectures: the Intel Xeon Phi coprocessor and an Epiphany-like NoC virtual prototype. Experimental results prove that SoPHy+ is capable of adapting to the run-time workload variation effectively with affordable overhead of run-time resource management.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , ,