Article ID Journal Published Year Pages File Type
4631184 Applied Mathematics and Computation 2011 7 Pages PDF
Abstract

This paper presents a new approximate method of Abel differential equation. By using the shifted Chebyshev expansion of the unknown function, Abel differential equation is approximately transformed to a system of nonlinear equations for the unknown coefficients. A desired solution can be determined by solving the resulting nonlinear system. This method gives a simple and closed form of approximate solution of Abel differential equation. The solution is calculated in the form of a series with easily computable components. The numerical results show the effectiveness of the method for this type of equation. Comparing the methodology with some known techniques shows that the present approach is relatively easy and highly accurate.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,