Article ID Journal Published Year Pages File Type
4631362 Applied Mathematics and Computation 2012 13 Pages PDF
Abstract

A Galerkin boundary element method based on interpolatory Hermite trigonometric wavelets is presented for solving 2-D potential problems defined inside or outside of a circular boundary in this paper. In this approach, an equivalent variational form of the corresponding boundary integral equation for the potential problem is used; the trigonometric wavelets are employed as trial and test functions of the variational formulation. The analytical formulae of the matrix entries indicate that most of the matrix entries are naturally zero without any truncation technique and the system matrix is a block diagonal matrix. Each block consists of four circular submatrices. Hence the memory spaces and computational complexity of the system matrix are linear scale. This approach could be easily coupled into domain decomposition method based on variational formulation. Finally, the error estimates of the approximation solutions are given and some test examples are presented.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,