Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4632651 | Applied Mathematics and Computation | 2010 | 12 Pages |
Abstract
This paper provides the observer-based finite-time control problem of time-delayed Markov jump systems that possess randomly jumping parameters. The transition of the jumping parameters is governed by a finite-state Markov process. The observer-based finite-time Hâ controller via state feedback is proposed to guarantee the stochastic finite-time boundedness and stochastic finite-time stabilization of the resulting closed-loop system for all admissible disturbances and unknown time-delays. Based on stochastic finite-time stability analysis, sufficient conditions that ensure stochastic robust control performance of time-delay jump systems are derived. The control criterion is formulated in the form of linear matrix inequalities and the designed finite-time stabilization controller is described as an optimization one. The presented results are extended to time-varying delayed MJSs. Simulation results illustrate the effectiveness of the developed approaches.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Shuping He, Fei Liu,