Article ID Journal Published Year Pages File Type
463363 Optical Fiber Technology 2015 6 Pages PDF
Abstract

This work reports the strong nonlinear power transfer between two adjacent photonic bandgaps of hybrid photonic crystal fibers. The nonlinear phenomenon originates from the generation of a resonant radiation in a particular bandgap, which is ensured by launching a femtosecond pulse near the zero-dispersion wavelength of a lower-order adjacent bandgap, where its correspondent soliton is formed. A theoretical description based on fiber dispersion properties and phase-matching conditions is presented to contribute to the interpretation and understanding of the highly efficient energy transference. Furthermore, various experimental results are reported, including the resonant radiation that peaks at 8.5 dB above that of the initial pulse, which represents a significant enhancement in the nonlinear efficiency compared to previous published works in the literature.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , , , ,