Article ID Journal Published Year Pages File Type
4638102 Journal of Computational and Applied Mathematics 2016 11 Pages PDF
Abstract

Diffusion of molecules is simulated stochastically by letting them jump between voxels in a Cartesian mesh. The jump coefficients are first derived using finite difference, finite element, and finite volume approximations of the Laplacian on the mesh. An alternative is to let the first exit time for a molecule in random walk in a voxel define the jump coefficient. Such coefficients have the advantage of always being non-negative. These four different ways of obtaining the diffusion propensities are compared theoretically and in numerical experiments. A finite difference and a finite volume approximation generate the most accurate coefficients.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,