Article ID Journal Published Year Pages File Type
4638172 Journal of Computational and Applied Mathematics 2016 18 Pages PDF
Abstract

Given a two-dimensional correlated diffusion process, we determine the joint density of the first passage times of the process to some constant boundaries. This quantity depends on the joint density of the first passage time of the first crossing component and of the position of the second crossing component before its crossing time. First we show that these densities are solutions of a system of Volterra–Fredholm first kind integral equations. Then we propose a numerical algorithm to solve it and we describe how to use the algorithm to approximate the joint density of the first passage times. The convergence of the method is theoretically proved for bivariate diffusion processes. We derive explicit expressions for these and other quantities of interest in the case of a bivariate Wiener process, correcting previous misprints appearing in the literature. Finally we illustrate the application of the method through a set of examples.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,