Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
463894 | Optical Fiber Technology | 2009 | 6 Pages |
Abstract
The spectral-amplitude-coding (SAC) optical code-division multiple-access (OCDMA) systems use transmissive-mode fiber-Bragg gratings (FBG) instead of reflective-mode to avoid chip-timing. However, practical FBGs have non-ideal reflection coefficients to produce leakage effect and high phase-induced intensity noise (PIIN). This study is to cascade more of the same-frequency non-ideal FBGs to approach an ideal squared perfect spectrum for highly reliable network coding. A simple experiment is demonstrated to verify the square-like approach. Moreover, a residual-spectra eliminator (RSE) between FBG encoder and decoder is taken to remove non-coding part of the transmissive spectra for the suppression of PIIN in the receiver photo-detectors. Evaluation results show that the combination of RSE with cascaded FBGs can significantly improve the leakage and the PIIN effects for the SAC-OCDMA network.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Networks and Communications
Authors
Cheng-Mu Tsai, Jen-Fa Huang,