Article ID Journal Published Year Pages File Type
463929 Optical Fiber Technology 2009 7 Pages PDF
Abstract

The characteristics of photonic bandgaps and the transmission/reflection of guided optical waves in the magneto-optic fiber Bragg grating (MFBG) are theoretically investigated for the first time. The polarization-mode conversion resulting from the Faraday effect may change the width of the pure bandgap, or even lead to a couple of photonic semitransparent frequency band (STB) for sufficiently large magneto-optical-to-grating coupling ratio (MGR). Within the STBs, the transmittivity and reflectivity are equal and then the MFBG can serve as a 3 dB light beam splitter. Based on the sensitivity of MFBG spectral lines to the magneto-optic (MO) coupling coefficient, a novel high-resolution magnetic field sensor capable of up to 0.01 nm/(kA/m) is predicted. According to the dependency of nonlinear transmission or reflection on the MO effects, a new class of MFBG-based nonlinear optical switches under an appropriate MO bias may also be achieved with applications to flexible and controllable optical signal processing.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications