Article ID Journal Published Year Pages File Type
4639620 Journal of Computational and Applied Mathematics 2012 13 Pages PDF
Abstract

In this paper, we use quartic B-spline to construct an approximating function to agree with the given integral values of a univariate real-valued function over the same intervals. It is called integro quartic spline interpolation. Our interpolation method is new and easy to implement. Moreover, it can work successfully even without any boundary conditions. The interpolation errors are studied. The super convergence (sixth order and fourth order, respectively) in approximating function values and second-order derivative values at the knots is proved. Numerical examples illustrate that our method is very effective and our integro-interpolating quartic spline has higher approximation ability than others.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,