Article ID Journal Published Year Pages File Type
4639633 Journal of Computational and Applied Mathematics 2012 15 Pages PDF
Abstract

This paper addresses new algorithms for constructing weighted cubic splines that are very effective in interpolation and approximation of sharply changing data. Such spline interpolations are a useful and efficient tool in computer-aided design when control of tension on intervals connecting interpolation points is needed. The error bounds for interpolating weighted splines are obtained. A method for automatic selection of the weights is presented that permits preservation of the monotonicity and convexity of the data. The weighted B-spline basis is also well suited for generation of freeform curves, in the same way as the usual B-splines. By using recurrence relations we derive weighted B-splines and give a three-point local approximation formula that is exact for first-degree polynomials. The resulting curves satisfy the convex hull property, they are piecewise cubics, and the curves can be locally controlled with interval tension in a computationally efficient manner.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,