Article ID Journal Published Year Pages File Type
464064 Nano Communication Networks 2010 7 Pages PDF
Abstract

In this paper, we investigate a design of biological excitable media based on non-excitable cells and intercellular calcium signaling mechanisms. The calcium induced calcium release mechanism in non-excitable cells is exploited to transform the non-excitable cells into excitable media that propagate calcium signals cell-to-cell. The biological excitable media investigated in this paper represent versatile media for controlling biological systems owing to the nature and function of calcium signals as the universal second messenger for the cell. The enhanced calcium excitability of non-excitable cells is experimentally demonstrated and a mathematical model is developed to investigate the condition for non-excitable cells to increase the calcium excitability.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , , , ,