Article ID Journal Published Year Pages File Type
4644820 Applied Numerical Mathematics 2016 15 Pages PDF
Abstract

This paper presents a finite volume scheme for a scalar one-dimensional fluid–particle interaction model. When devising a finite volume scheme for this model, one difficulty that arises is how to deal with the moving source term in the PDE while maintaining a fixed grid. The fixed grid requirement comes from the ultimate goal of accommodating two or more particles. The finite volume scheme that we propose addresses the moving source term in a novel way. We use a modified computational stencil, with the lower part of the stencil shifted during those time steps when the particle crosses a mesh point. We then employ an altered convective flux to compensate the stencil shifts. The resulting scheme uses a fixed grid, preserves total momentum, and enforces several stability properties in the single-particle case. The single-particle scheme is easily extended to multiple particles by a splitting method.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
,