Article ID Journal Published Year Pages File Type
4644983 Applied Numerical Mathematics 2016 21 Pages PDF
Abstract

A new time discretization scheme for the numerical simulation of two-phase flow governed by a thermodynamically consistent diffuse interface model is presented. The scheme is consistent in the sense that it allows for a discrete in time energy inequality. An adaptive spatial discretization is proposed that conserves the energy inequality in the fully discrete setting by applying a suitable post processing step to the adaptive cycle. For the fully discrete scheme a quasi-reliable error estimator is derived which estimates the error both of the flow velocity, and of the phase field. The validity of the energy inequality in the fully discrete setting is numerically investigated.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, , ,