Article ID Journal Published Year Pages File Type
4645112 Applied Numerical Mathematics 2014 11 Pages PDF
Abstract

An immersed nonconforming finite element method based on the flux continuity on intercell boundaries is introduced. The direct application of flux continuity across the support of basis functions yields a nonsymmetric stiffness system for interface elements. To overcome non-symmetry of the stiffness system we introduce a modification based on the Riesz representation and a local postprocessing to recover local fluxes. This approach yields a P1P1 immersed nonconforming finite element method with a slightly different source term from the standard nonconforming finite element method. The recovered numerical flux conserves total flux in arbitrary sub-domain. An optimal rate of convergence in the energy norm is obtained and numerical examples are provided to confirm our analysis.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, ,