| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 4645112 | Applied Numerical Mathematics | 2014 | 11 Pages |
An immersed nonconforming finite element method based on the flux continuity on intercell boundaries is introduced. The direct application of flux continuity across the support of basis functions yields a nonsymmetric stiffness system for interface elements. To overcome non-symmetry of the stiffness system we introduce a modification based on the Riesz representation and a local postprocessing to recover local fluxes. This approach yields a P1P1 immersed nonconforming finite element method with a slightly different source term from the standard nonconforming finite element method. The recovered numerical flux conserves total flux in arbitrary sub-domain. An optimal rate of convergence in the energy norm is obtained and numerical examples are provided to confirm our analysis.
