Article ID Journal Published Year Pages File Type
4646150 Applied Numerical Mathematics 2007 10 Pages PDF
Abstract

We developed a fast iterative solver for computing time-harmonic acoustic waves scattered by an elastic object in layered media. The discretization of the problem was performed using a finite element method with linear elements based on a locally body-fitted uniform triangulation. We used a domain decomposition preconditioner in the iterative solution of the resulting system of linear equations. The preconditioner was based on a cyclic reduction type fast direct solver. The solution procedure reduces GMRES iterates onto a sparse subspace which decreases the storage and computational requirements essentially. The numerical results demonstrate the effectiveness of the proposed approach for two-dimensional domains that are hundreds of wavelengths wide and require the solution of linear systems with several millions of unknowns.

Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics