Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4647119 | Discrete Mathematics | 2016 | 5 Pages |
Abstract
We show that “almost all” generalized Petersen graphs have total chromatic number 4. More precisely: for each integer k≥2k≥2, there exists an integer N(k)N(k) such that, for any n≥N(k)n≥N(k), the generalized Petersen graph G(n,k)G(n,k) has total chromatic number 4.
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
S. Dantas, C.M.H. de Figueiredo, G. Mazzuoccolo, M. Preissmann, V.F. dos Santos, D. Sasaki,