Article ID Journal Published Year Pages File Type
4647724 Discrete Mathematics 2013 7 Pages PDF
Abstract
Let P be an n×n partial Latin square every non-empty cell of which lies in a fixed row r, a fixed column c or contains a fixed symbol s. Assume further that s is the symbol of cell (r,c) in P. We prove that P is completable to a Latin square if n≥8 and n is divisible by 4, or n≤7 and n∉{3,4,5}. Moreover, we present a polynomial algorithm for the completion of such a partial Latin square.
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,