Article ID Journal Published Year Pages File Type
4655278 Journal of Combinatorial Theory, Series A 2015 20 Pages PDF
Abstract
Every n-edge colored n-regular graph G naturally gives rise to a simple abstract n-polytope, the colorful polytope of G, whose 1-skeleton is isomorphic to G. The paper describes colorful polytope versions of the associahedron and cyclohedron. Like their classical counterparts, the colorful associahedron and cyclohedron encode triangulations and flips, but now with the added feature that the diagonals of the triangulations are colored and adjacency of triangulations requires color preserving flips. The colorful associahedron and cyclohedron are derived as colorful polytopes from the edge colored graph whose vertices represent these triangulations and whose colors on edges represent the colors of flipped diagonals.
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , , ,