Article ID Journal Published Year Pages File Type
4655428 Journal of Combinatorial Theory, Series A 2013 28 Pages PDF
Abstract
We study rational double Hurwitz cycles, i.e. loci of marked rational stable curves admitting a map to the projective line with assigned ramification profiles over two fixed branch points. Generalizing the phenomenon observed for double Hurwitz numbers, such cycles are piecewise polynomial in the entries of the special ramification; the chambers of polynomiality and wall crossings have an explicit and “modular” description. A main goal of this paper is to simultaneously carry out this investigation for the corresponding objects in tropical geometry, underlining a precise combinatorial duality between classical and tropical Hurwitz theory.
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , ,