Article ID Journal Published Year Pages File Type
465634 Pervasive and Mobile Computing 2011 15 Pages PDF
Abstract

In this paper, we present a technique to recognize the position of sensors on the human body. Automatic on-body device localization ensures correctness and accuracy of measurements in health and medical monitoring systems. In addition, it provides opportunities to improve the performance and usability of ubiquitous devices. Our technique uses accelerometers to capture motion data to estimate the location of the device on the user’s body, using mixed supervised and unsupervised time series analysis methods. We have evaluated our technique with extensive experiments on 25 subjects. On average, our technique achieves 89% accuracy in estimating the location of devices on the body. In order to study the feasibility of classification of left limbs from right limbs (e.g., left arm vs. right arm), we performed an analysis, based on which no meaningful classification was observed. Personalized ultraviolet monitoring and wireless transmission power control comprise two immediate applications of our on-body device localization approach. Such applications, along with their corresponding feasibility studies, are discussed.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , ,