Article ID Journal Published Year Pages File Type
4658438 Topology and its Applications 2014 10 Pages PDF
Abstract
In his PhD thesis [1], Abrams proved that, for a natural number n and a graph G with at least n vertices, the n-strand configuration space of G, denoted Cn(G), deformation retracts to a compact subspace, the discretized n-strand configuration space, provided G satisfies two conditions: each path between distinct essential vertices (vertices of degree not equal to 2) is of length at least n+1 edges, and each path from a vertex to itself which is not nullhomotopic is of length at least n+1 edges. Using Forman's discrete Morse theory for CW-complexes, we show the first condition can be relaxed to require only that each path between distinct essential vertices is of length at least n−1.
Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology
Authors
, ,