Article ID Journal Published Year Pages File Type
4658844 Topology and its Applications 2013 19 Pages PDF
Abstract

In this paper, we introduce the notion of expanding topological space. We define the topological expansion of a topological space via local multi-homeomorphism over coproduct topology, and we prove that the coproduct family associated to any fractal family of topological spaces is expanding. In particular, we prove that the more a topological space expands, the finer the topology of its indexed states is. Using multi-homeomorphisms over associated coproduct topological spaces, we define a locally expandable topological space and we prove that a locally expandable topological space has a topological expansion. Specifically, we prove that the fractal manifold is locally expandable and has a topological expansion.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology
Authors
,