Article ID Journal Published Year Pages File Type
4658934 Topology and its Applications 2013 24 Pages PDF
Abstract

Sormani and Wei proved in 2004 that a compact geodesic space has a categorical universal cover if and only if its covering/critical spectrum is finite. We add to this several equivalent conditions pertaining to the geometry and topology of the revised and uniform fundamental groups. We show that a compact geodesic space X has a universal cover if and only if the following hold: 1) its revised and uniform fundamental groups are finitely presented, or, more generally, countable; 2) its revised fundamental group is discrete as a quotient of the quasitopological fundamental group . In the process, we classify the topological singularities in X, and we show that the above conditions imply closed liftings of all sufficiently small path loops to all covers of X, generalizing the traditional semilocally simply connected property. A geodesic space X with this new property is called semilocally r-simply connected, and X has a universal cover if and only if it satisfies this condition. We then introduce the covering topology on π1(X), which can be considered a geometrization of both Brazas–Fabelʼs shape topology and the topology induced by the more general Spanier groups. We establish several connections between properties of the covering topology, the existence of simply connected and universal covers, and geometries on the fundamental group.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology