Article ID Journal Published Year Pages File Type
4661720 Annals of Pure and Applied Logic 2014 28 Pages PDF
Abstract

Several extensions of Gödel's system TT with new forms of recursion have been designed for the purpose of giving a computational interpretation to classical analysis. One can organise many of these extensions into two groups: those based on bar recursion, which include Spector's original bar recursion, modified bar recursion and the more recent products of selections functions, or those based on open recursion   which in particular include the symmetric Berardi–Bezem–Coquand (BBC) functional. We relate these two groups by showing that both open recursion and the BBC functional are primitive recursively equivalent to a variant of modified bar recursion. Our results, in combination with existing research, essentially complete the classification up to primitive recursive equivalence of those extensions of system TT used to give a direct computational interpretation to choice principles.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Logic
Authors
,