Article ID Journal Published Year Pages File Type
466259 Physical Communication 2016 16 Pages PDF
Abstract

Given a set of multiple requests from clients equipped with MM antennae and a wireless network of mm channels, on-demand data broadcast requires to find an optimal schedule of broadcasting (placing) all requested data items of RR on a set of channels CC as evenly as possible under the constraint that each client may use at most MM channels. Such a schedule is important for overcoming the shortcomings of wireless networks such as asymmetric bandwidth between uplink and downlink, and limited battery life of mobile devices. Existing schemes for data broadcast assume single-antenna clients and will result in significant bandwidth wastage and client’s data download time increase. To overcome these problems, we propose a novel approach for disseminating multimedia data in a MIMO wireless network by converting it to the multiprocessor scheduling problem where requests and antennae are regarded as tasks and processors respectively. We present three schemes (LFOS, BFOS and BBOS) under this approach: LFOS scheduling data items of largest sizes, BFOS adopting the best matching between data items and channels, and BBOS partitioning data items properly to balance the broadcast cycles of all channels. In comparison with the existing schemes based on single-antenna broadcast, our schemes improve access latency and channel bandwidth usage significantly. This has been verified through extensive experimental results.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, ,