Article ID Journal Published Year Pages File Type
4663516 Acta Mathematica Scientia 2016 19 Pages PDF
Abstract

In this article, we develop a fully Discrete Galerkin(DG) method for solving initial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(GJPs) with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. The fractional derivatives are used in the Caputo sense. The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated. We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution. Numerical results are presented to demonstrate the effectiveness of the proposed method.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)