Article ID Journal Published Year Pages File Type
4665302 Advances in Mathematics 2015 33 Pages PDF
Abstract

The Tarski number of a non-amenable group G is the minimal number of pieces in a paradoxical decomposition of G. In this paper we investigate how Tarski numbers may change under various group-theoretic operations. Using these estimates and known properties of Golod–Shafarevich groups, we show that the Tarski numbers of 2-generated non-amenable groups can be arbitrarily large. We also use the cost of group actions to show that there exist groups with Tarski numbers 5 and 6. These provide the first examples of non-amenable groups without free subgroups whose Tarski number has been computed precisely.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , ,