Article ID Journal Published Year Pages File Type
4665454 Advances in Mathematics 2015 31 Pages PDF
Abstract

Selberg-type integrals that can be turned into constant term identities for Laurent polynomials arise naturally in conjunction with random matrix models in statistical mechanics. Built on a recent idea of Karasev and Petrov we develop a general interpolation based method that is powerful enough to establish many such identities in a simple manner. The main consequence is the proof of a conjecture of Forrester related to the Calogero–Sutherland model. In fact we prove a more general theorem, which includes Aomoto's constant term identity at the same time. We also demonstrate the relevance of the method in additive combinatorics.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , , ,