| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 4666081 | Advances in Mathematics | 2013 | 47 Pages | 
Abstract
												In this paper we propose a new definition of prime ends for domains in metric spaces under rather general assumptions. We compare our prime ends to those of Carathéodory and Näkki. Modulus ends and prime ends, defined by means of the p-modulus of curve families, are also discussed and related to the prime ends. We provide characterizations of singleton prime ends and relate them to the notion of accessibility of boundary points, and introduce a topology on the prime end boundary. We also study relations between the prime end boundary and the Mazurkiewicz boundary. Generalizing the notion of John domains, we introduce almost John domains, and we investigate prime ends in the settings of John domains, almost John domains and domains which are finitely connected at the boundary.
											Keywords
												
											Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Mathematics (General)
												
											Authors
												Tomasz Adamowicz, Anders Björn, Jana Björn, Nageswari Shanmugalingam, 
											