Article ID Journal Published Year Pages File Type
468196 Computers & Mathematics with Applications 2013 23 Pages PDF
Abstract

We process snapshots of trajectories of evolution equations with intrinsic symmetries, and demonstrate the use of recently developed eigenvector-based techniques to successfully quotient out the degrees of freedom associated with the symmetries in the presence of noise. Our illustrative examples include a one-dimensional evolutionary partial differential (the Kuramoto–Sivashinsky) equation with periodic boundary conditions, as well as a stochastic simulation of nematic liquid crystals which can be effectively modeled through a nonlinear Smoluchowski equation on the surface of a sphere. This is a useful first step towards data mining the symmetry-adjusted ensemble of snapshots in search of an accurate low-dimensional parametrization and the associated reduction of the original dynamical system. We also demonstrate a technique (Vector Diffusion Maps) that combines, in a single formulation, the symmetry removal step and the dimensionality reduction step.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,