Article ID Journal Published Year Pages File Type
468241 Computers & Mathematics with Applications 2013 9 Pages PDF
Abstract

Interpolated bounce-back boundary conditions for the lattice Boltzmann method (LBM) make the accurate representation of complex geometries possible. In the present work, we describe an implementation of a linearly interpolated bounce-back (LIBB) boundary condition for graphics processing units (GPUs). To validate our code, we simulated the flow past a sphere in a square channel. At low Reynolds numbers, results are in good agreement with experimental data. Moreover, we give an estimate of the critical Reynolds number for transition from steady to periodic flow. Performance recorded on a single node server with eight GPU based computing devices ranged up to 2.63×1092.63×109 fluid node updates per second. Comparison with a simple bounce-back version of the solver shows that the impact of LIBB on performance is fairly low.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,