Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
468243 | Computers & Mathematics with Applications | 2013 | 13 Pages |
A first-order extended lattice Boltzmann (LB) model with special forcing terms for one-dimensional Maxwell equations exerting on a dispersive medium, described either by the Debye or Drude model, is proposed in this study. The time dependent dispersive effect is obtained by the inverse Fourier transform of the frequency-domain permittivity and is incorporated into the LB evolution equations via equivalent forcing effects. The Chapman–Enskog multi-scale analysis is employed to ensure that proposed scheme is mathematically consistent with the targeted Maxwell’s equations at the macroscopic limit. Numerical validations are executed through simulating four representative cases to obtain their LB solutions and compare those with the analytical solutions and existing numerical solutions by finite difference time domain (FDTD). All comparisons show that the differences in numerical values are very small. The present model can thus accurately predict the dispersive effects, and demonstrate first order convergence. In addition to its accuracy, the proposed LB model is also easy to implement. Consequently, this new LB scheme is an effective approach for numerical modeling of EM waves in dispersive media.