Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
468519 | Computers & Mathematics with Applications | 2012 | 11 Pages |
This paper addresses the motion tracking control for a class of flexible-joint robotic manipulators actuated by brushed direct current motors. This class of electrically driven flexible-joint robots is perturbed by plant uncertainties and external disturbances. Adaptive neural network systems are employed to approximate the behaviors of uncertain mechanical and electrical dynamics. A reduced-order observer is constructed to estimate the velocity signals. Only the measurements of link position and armature current are required for feedback. Consequently, an adaptive neural network-based dynamic feedback tracking controller without velocity measurements is developed such that all the states and signals of the closed-loop system are bounded and the trajectory tracking errors can be made as small as possible. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control algorithms.