Article ID Journal Published Year Pages File Type
469146 Computer Methods and Programs in Biomedicine 2008 10 Pages PDF
Abstract

A cardiovascular system (CVS) model has previously been validated in simulated cardiac and circulatory disease states. It has also been shown to accurately capture all main hemodynamic trends in a porcine model of pulmonary embolism. In this research, a slightly extended CVS model and parameter identification process are presented and validated in a porcine experiment of positive end-expiratory pressure (PEEP) titrations at different volemic levels. The model is extended to more physiologically represent the separation of venous and arterial circulation. Errors for the identified model are within 5% when re-simulated and compared to clinical data. All identified parameter trends match clinically expected changes. This work represents another clinical validation of the underlying fundamental CVS model, and the methods and approach of using them for cardiovascular diagnosis in critical care.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , , , , , , , ,