Article ID Journal Published Year Pages File Type
469175 Computer Methods and Programs in Biomedicine 2012 9 Pages PDF
Abstract

Considering the difficulty in selecting correct insulin doses and the problem of hyper- and hypoglycemia episodes in type 1 diabetes, dosage-aid systems are very useful for these patients. A model-based approach to this problem must unavoidably consider uncertainty sources such as large intra-patient variability and food intake. In the present study, postprandial glucose is predicted considering this uncertain information using modal interval analysis. This approach calculates a safer prediction of possible hyper- and hypoglycemia episodes induced by insulin therapy for an individual patient's parameters and integrates this information into a dosage-aid system. Predictions of a patient's postprandial glucose at 5-h intervals are used to predict the risk for a given therapy. Then the insulin dose and injection-to-meal time with the lowest risk are calculated. The method has been validated for three different scenarios corresponding to preprandial glucose values of 100, 180 and 250 mg/dl.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , , ,