Article ID Journal Published Year Pages File Type
469274 Computers & Mathematics with Applications 2010 12 Pages PDF
Abstract

In this article, we discuss fractional order optimal control problems (FOCPs) and their solutions by means of rational approximation. The methodology developed here allows us to solve a very large class of FOCPs (linear/nonlinear, time-invariant/time-variant, SISO/MIMO, state/input constrained, free terminal conditions etc.) by converting them into a general, rational form of optimal control problem (OCP). The fractional differentiation operator used in the FOCP is approximated using Oustaloup’s approximation into a state-space realization form. The original problem is then reformulated to fit the definition used in general-purpose optimal control problem (OCP) solvers such as RIOTS_95, a solver created as a Matlab toolbox. Illustrative examples from the literature are reproduced to demonstrate the effectiveness of the proposed methodology and a free final time OCP is also solved.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,