Article ID Journal Published Year Pages File Type
469492 Computer Methods and Programs in Biomedicine 2006 7 Pages PDF
Abstract

Medical parametric imaging with dynamic positron emission tomography (PET) plays an increasingly potential role in modern biomedical research and clinical diagnosis. The key issue in parametric imaging is to estimate parameters based on sampled data at the pixel-by-pixel level from certain dynamic processes described by valid mathematical models. Classic nonlinear least squares (NLS) algorithm requires a “good” initial guess and the computational time-complexity is high, which is impractical for image-wide parameter estimation. Although a variety of fast parametric imaging techniques have been developed, most of them focus on single input systems, which do not provide an optimal solution for dual-input biomedical system parameter estimation, which is the case of liver metabolism. In this study, a dual-input-generalized linear least squares (D-I-GLLS) algorithm was proposed to identify the model parameters including the parameter in the dual-input function. Monte Carlo simulation was conducted to examine this novel fast algorithm. The results of the quantitative analysis suggested that the proposed technique could provide comparable reliability of the parameter estimation with NLS fitting and accurately identify the parameter in the dual-input function. This method may be potentially applicable to other dual-input biomedical system parameter estimation as well.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,