Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
469509 | Computers & Mathematics with Applications | 2009 | 11 Pages |
Abstract
The Karush–Kuhn–Tucker system of a second-order cone constrained variational inequality problem is transformed into a semismooth system of equations with the help of Fischer–Burmeister operators over second-order cones. The Clarke generalized differential of the semismooth mapping is presented. A modified Newton method with Armijo line search is proved to have global convergence with local superlinear rate of convergence under certain assumptions on the variational inequality problem. An illustrative example is given to show how the globally convergent method works.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science (General)
Authors
Juhe Sun, Liwei Zhang,