Article ID Journal Published Year Pages File Type
469583 Computers & Mathematics with Applications 2009 6 Pages PDF
Abstract

Word alignment is a key task in statistical machine translation (SMT). This paper presents a novel model for this task. In this model, word alignment is considered as a multiobjective optimization problem and solved based on the non-dominated sorting genetic algorithm II (NSGA-II), which is one of the best multiobjective evolutionary algorithms (MOEA). There are two advantages of the proposed model based on NSGA-II. First, it could be easily extended through incorporating new objective functions. Secondly, it does not need any hand-aligned word-level alignment data to determine the weight of each objective function. Experiments were carried out and the results show that the proposed model outperforms the IBM translation models significantly.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,