Article ID Journal Published Year Pages File Type
469607 Computers & Mathematics with Applications 2009 7 Pages PDF
Abstract

Based on the principle of one-against-one support vector machines (SVMs) multi-class classification algorithm, this paper proposes an extended SVMs method which couples adaptive resonance theory (ART) network to reconstruct a multi-class classifier. Different coupling strategies to reconstruct a multi-class classifier from binary SVM classifiers are compared with application to fault diagnosis of transmission line. Majority voting, a mixture matrix and self-organizing map (SOM) network are compared in reconstructing the global classification decision. In order to evaluate the method’s efficiency, one-against-all, decision directed acyclic graph (DDAG) and decision-tree (DT) algorithm based SVM are compared too. The comparison is done with simulations and the best method is validated with experimental data.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , , ,