Article ID Journal Published Year Pages File Type
469610 Computers & Mathematics with Applications 2009 9 Pages PDF
Abstract

Product platform design (PFD) has been recognized as an effective means to satisfy diverse market niches while maintaining the economies of scale and scope. Numerous optimization-based approaches have been proposed to help resolve the tradeoff between platform commonality and the ability to achieve distinct performance targets for each variant. In this study, we propose a two-stage multiobjective optimization-based platform design methodology (TMOPDM) for solving the product family problem using a multiobjective genetic algorithm. In the first stage, the common product platform is identified using a nondominated sorting genetic algorithm II (NSGA-II); In the second stage, each individual product is designed around the common platform such that the functional requirements of the product are best satisfied. The design of a family of traction machine is used as an example to benchmark the effectiveness of the proposed approach against previous approachs.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,