Article ID Journal Published Year Pages File Type
4696311 Marine and Petroleum Geology 2010 15 Pages PDF
Abstract

Large craters associated with mounds of remobilised sediment have been recently mapped on the mid Norway margin in the Møre Basin. These craters and mounds may be linked to the long term migration of fluids upwards from the lower levels of the Møre Basin which exploit hydrothermal vent complexes emplaced in the late Paleocene and early Eocene. All of the craters are located on a regionally correlative seismic surface that is correlated with the basal shear plane of Slide W, a slide located at the base of the Plio-Pleistocene Naust Formation. The Craters are positioned in the western area of the Møre Basin at the foot of the continental slope on the crests and flanks of Miocene domes, where Oligocene biosiliceous ooze subcrops on the basal shear surface of Slide W. Not all of the craters are filled by Slide W. Mounds are emplaced above those craters which are filled by Slide W on the top surface of Slide W. Stratal relationships show that the mounds were emplaced on the paleo-seabed. We present and discuss two models that illustrate processes that may have been involved in the formation of craters and remobilisation of sediments. In one model, an eruption of fluid from beneath remobilises ooze into ooze mounds in a single event triggering slope failure, whereas in the other model the emplacement of Slide W and later slides loads low density ooze causing it to undergo liquefaction, a process which may have been facilitated by the trapping of continuous long term fluid migrating from beneath, causing the ooze to remobilise into ooze mounds in two or more events.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, ,