Article ID Journal Published Year Pages File Type
470145 Computer Methods and Programs in Biomedicine 2009 11 Pages PDF
Abstract

Feature extraction techniques based on selection of highly discriminant Fourier filters have been developed for an automated classification of magnifying endoscope images with respect to pit patterns of colon lesions. These are applied to duodenal imagery for diagnosis of celiac disease. Features are extracted from the Fourier domain by selecting the most discriminant features using an evolutionary algorithm. Subsequent classification is performed with various standard algorithms (KNN, SVM, Bayes classifier) and combination of several Fourier filters and classifiers which is called multiclassifier. The obtained results are promising, due to a high specificity for the detection of mucosal damage typical of untreated celiac disease.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , , , ,