Article ID Journal Published Year Pages File Type
470806 Computers & Mathematics with Applications 2016 9 Pages PDF
Abstract

In this paper, we study a diffusive and delayed virus dynamics model with Beddington–DeAngelis incidence and CTL immune response. By constructing Lyapunov functionals, we show that if the basic reproductive number is less than or equal to one, then the infection-free equilibrium is globally asymptotically stable; if the immune reproductive number is less than or equal to one and the basic reproductive number is greater than one, then the immune-free equilibrium is globally asymptotically stable; if the immune reproductive number is greater than one, then the interior equilibrium is globally asymptotically stable.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,