Article ID Journal Published Year Pages File Type
471076 Computers & Mathematics with Applications 2010 9 Pages PDF
Abstract

The Extended Euclidean algorithm for matrix Padé approximants is applied to compute matrix Padé approximants when the coefficient matrices of the input matrix polynomial are triangular. The procedure given by Bjarne S. Anderson et al. for packing a triangular matrix in recursive packed storage is applied to pack a sequence of lower triangular matrices of a matrix polynomial in recursive packed storage. This recursive packed storage for a matrix polynomial is applied to compute matrix Padé approximants of the matrix polynomial using the Matrix Padé Extended Euclidean algorithm in packed form. The CPU time and memory comparison, in computing the matrix Padé approximants of a matrix polynomial, between the packed case and the non-packed case are described in detail.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,