Article ID Journal Published Year Pages File Type
471645 Computers & Mathematics with Applications 2006 10 Pages PDF
Abstract

We consider the class of polynomial differential equations x˙ Pn(x,y)+Pn+1(x,y)+Pn+2(x,y), y˙=Qn(x,y)+Qn+1(x,y)+Qn+2(x,y), for n ≥ 1 and where Pi and Qi are homogeneous polynomials of degree i These systems have a linearly zero singular point at the origin if n > 2. Inside this class, we identify a new subclass of Darboux integrable systems, and some of them having a degenerate center, i.e., a center with linear part identically zero. Moreover, under additional conditions such Darboux integrable systems can have at most one limit cycle. We provide the explicit expression of this limit cycle.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)